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A Mode-Matching Technique
for Mode Coupling in a Gyrotron Cavity

Vasu Kasibhotla, Student Member, IEEE, and Alan H. McCurdy, Member, IEEE

Abstract— The mode-matching techmique (MMT) is used to
compute the electromagnetic fields, stored energy, and input ad-
mittances of a gyrotron cavity coupled to one or more waveguides.
The method is based on matching the cavity and wavegunide
eigenmodes across the cavity apertures and accommodates cavity
walls of finite conductivity. The MMT is used in the gyrotron
problem because fields in and near the aperture must be com-
puted accurately, and because the eigenmode decomposition is
advantageous for inclusion of an electron beam. Irrotational
modes are part of the complete set of orthogonal vectors required
to expand an H-field in an open cavity, but were excluded in
most gyrotron literature; here, this is corrected. The MMT is
numerically implemented for cavities of rectangular and circular
cross section. Coupling between different modes in a gyrotron
cavity through external and ohmic losses is demonstrated. A
coupled (complex) cavity gyrotron design is analyzed using MMT.
The energy and modal spectra of the cavity are computed,
demonstrating the mode selective properties of the design.

1. INTRODUCTION

N A GYROTRON or other high power microwave oscil-

lator operating at high frequencies, it is not uncommon to
have two or more cavity electromagnetic modes in competi-
tion. It is important in such situations to be able to describe
the coupling between different modes accurately. In addition
to coupling through the electron beam, mode coupling can
occur through both external and ohmic losses in the cavity.
Typically, the gyrotron cavity is strongly coupled to the output
via an oversized waveguide, and this usually results in mode
coupling through external losses. In practice, the cavity wall
conductivity is usually high, but when modes are closely
spaced in frequency there may be some coupling through
ohmic losses in the cavity surface. New equations and results
that include ohmic cross-coupling effects through the cavity
walls are presented. In addition, irrotational modes that must
be included to get the correct expansion for the H-field in a
cavity with apertures in the cavity walls were not inluded in
much of the gyrotron literature. In this work, these irrotational
modes are included.

A number of techniques are available to describe the cavity
field excitation via the waveguide. They include the variational
method [1], the mode-matching technique (MMT) [2]-[4], the
method of moments (MOM) [5]-[7], and the scattering matrix
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method [10]. [11]. The variational methods yield accurate re-
sults for single mode propagation but ignore higher order mode
interactions. The MMT is based on matching the waveguide
and cavily modes at the junction. The MOM analysis provides
accurate results for waveguide discontinuities, and has proven
to be more computationally efficient than MMT in some cases.
The scattering matrix method {11] has proven to be useful in
determining the quality factors and resonant frequencies of a
complex cavity.

The size of the scattering matrix in MOM [5] is proportional
to the number of the interacting modes (propagating and
weakly evanescent); however, the number of modes required to
compute the field intensity in or near the plane of discontinuity
is on the same order as the mode-matching technique. To
describe the interaction of the gyrotron electron beam with the
cavity fields, it is required that fields in the cavity-waveguide
junction be computed accurately. Many evanescent modes are
present near the waveguide-cavity junction. It is important
to be able to accurately determine the amplitude of these
evanescent waveguide modes in the plane of discontinuity,
as the amplitudes of cavity eigenmodes are determined by
the tangential electric field in the cavity-waveguide junction.
Moreover, in gyrotron theory, it is convenient to be able
to predict the growth of individual cavity modes with the
beam present, and the usual techniques for computing gyrotron
performance are heavily dependent on modal decomposition.
For this reason, the MMT is used to describe mode conversion
in the gyrotron problem.

The scattering matrix method [10] has been used in the
formulation of a problem in which a series of waveguides
of different cross sections are connected with either open or
closed ends. As with the MOM and MMT methods, to obtain
an accurate field representation in the cavity, a large number
of waveguide modes are required. The MMT can conveniently
include the ohmic effects of cavity walls, beam current loading,
and side-wall cavity coupling through terms in the resulting
oscillator equations.

A number of early workers developed electromagnetic
modal expansions in a conducting cavity [2], [3]. Many of
these proved to be either incomplete or difficult to evaluate.
The complete sets of orthonormal modes given in [4] are more
suitable for a general expansion of electromagnetic fields in
a cavity, and are used here.

Here MMT is numerically applied to describe the excitation
of electromagnetic fields in a gyrotron cavity coupled to one or
more waveguides. Losses due to finite conductivity of the walls
are taken into account. The numerical results are benchmarked
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against the known analytical solutions for fields in a shorted
waveguide and the known ohmic @Q and frequency shift of a
weakly coupled cavity resonance [2], [8]. Coupling between
modes through radiation loss and dissipation in the cavity walls
is demonstrated and quantified. The equations developed here
can be readily modified to include an electron beam in the
gyrotron cavity.

Section II presents a formulation of the MMT as applied
to the cavity/waveguide problem including an electron beam.
The oscillator equations governing the growth of electromag-
netic modes in the gyrotron cavity are derived. A method
is described to solve the oscillator equations. Section III
gives benchmarks for the numerical results, and discusses
application of the theory to both a gyrotron cavity with lossy
walls and a coupled (complex) cavity gyrotron. Section IV
outlines the conclusions.

II. ANALYTICAL FORMULATION

Fig. 1 shows a circular waveguide exciting a cavity of
circular cross section. The electric and magnetic fields in the
cavity are expressed as sums of short circuit eigenmodes as

Buit) = 3 Falr) /‘ BuFt) Ba(r)de (1)

[e

and

Here the Ea and ﬁa are the solenoidal modes and G A are
the irrotational modes. It is to be noted that the irrotational
modes G, are part of the complete set of eigenvectors required
in the magnetic field expansion in a cavity which is not
completely enclosed by a perfect conductor [4]. Irrotational
modes are not required to expand the electric field because
all irrotational modes are orthogonal to the real electric field
in the absence of an electron beam. (In the presence of an
electron beam, irrotational modes can be ignored in the electric
field expansion if the space charge effects are neglected.) The
eigenmodes satisfy the orthonormality relations given by

/ E, Esdv= / Hy Hydo= / Go-Gpdv =645 (3)
J1 JV SV

where 6 is the Kronecker delta function.

Expanding the curl of the electric and magnetic fields in
terms of the appropriate eigenmodes and substituting into
Maxwell’s equations [2], the oscillator equations describing
the time evolution of electromagnetic fields in the cavity are

obtained as follows
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Fig. 1. Cross section of a circular waveguide coupled to a circular cavity.
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where S is the conducting portion of the cavity surface, S’ is
the open portion of the cavity surface, V" is the cavity volume,
k. is the resonant wavenumber, 7 is the outwardly directed
unit normal vector at the cavity surface, and J is the electron
beam current density.

Here the problem is solved in the steady state. The wave-
guide fields are expressed as sums over the corresponding
waveguide eigenmodes as

= — —

E, (7L, z.u))zz Us (2 w) By (7 Fis(z w) Zs(w)F, o (7L)

(6)
and
Hy (71, 2,w) = ZS:ZS(Z‘“})éfvS(FJ-) + %ﬁ;)é,,s(?ﬂ)
(7

where ﬁt’b and F' ».» are the transverse and longitudinal parts of
the s’th electric field eigenmode, C_T;“ and G - ¢ are the trans-
verse and longitudinal parts of the s'th magnetic field eigen-
mode, v, %5, and Z, are the voltage, current, and impedance
associated with mode s, respectively. The waveguide eigen-
modes are orthonormalized as

/ ﬁtr 'Ffbd’g =

= [ (Fox G zds =5, ®
J S

étr : éts ds

S

Equations (6) and (7) are applicable to waves propagating in
the 4=z and —% directions in the waveguide. If both forward
and backward waves are present, then the voltages and currents
are related as

vy =v —v and ¢, =il 4. (9)

It is assumed that there is no beam present in the gyrotron
cavity. It is also assumed that the waveguide is excited by a
source of unit amplitude propagating in the dominant mode
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(v = 1for s = 1,v} = 0 otherwise). Equation (4) is Fourier
transformed to obtain

—keq oA ,
fele) = (g [ X B} Al s

- =
where

foz:/ Ec'ﬁadv~ (10)
14

From Maxwell’s equations, the amplitude coefficients of the
magnetic field are obtained as

_ jwe
halw) = 25 folw)
where
Bo _/ H., H,dv (11)
v
and
-1 -
n(w) = — {7l x E(7,w)} -Gy ds
Jwp Jeis
where
g\ = / ﬁc . é')\ dv. (12)
v

The electric and magnetic fields in the cavity are coupled

through the cavity surface impedance n(w) as
7t X Bo(w) = n(w)He(w) (13)

on the conducting portion of the cavity surface. By defining
cavity ohmic quality factors as

wd 2 Qs 2
M [ Hy o Hy ds' T 6 [ My Ggds
and
2
Q5r = (14)

6 [, G Gp ds
where 6 1s the skin depth (evaluated at w,;w, = kqc). and

using (6), (10), and (13), the continuity of electric field across
the cavity-waveguide aperture gives
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Here
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(16)
Similarly, the continuity of the magnetic field across the
cavity-waveguide aperture, along with (2), (7), (10), (11), and
(13) gives
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Equations (15), (16), and (17) are written in a generalized
way so as to include a case where the cavity is fed by more

" than one waveguide. The index “n” is over all the waveguides

coupled to the cavity. and G: ., is the transverse part of the
s'th magnetic field eigenmode in the n'th waveguide coupled
to the cavity. The coefficients v, ., and (5, give a measure
of the coupling between the o/th cavity mode and the s'th
mode in the n’th waveguide. v and 3 are inversely proportional
to the external quality factors (.. The ohmic @ factors include
both self- and cross-coupling terms. It is to be noted that (15)
and (17) are’actually power-series expansions in the small
quantity 2@) where No = f For the case of a single cavity
mode, (15) reduces to

f ; ; ka I:'.Ya.sn - QTI‘(;;)(’ ﬂ]&wjr ] Usn
o — (kQ

) + ch&n ogfg)

where the typical % ohmic dependence in the denominator
is observed. In addition, note the ohmic modification in
waveguide-cavity coupling through the G, s term. Equations
(15) and (17) can be written in matrix form as

() = (A + B)(v) = (v7))] (18)
and

(1) = (O)(N) + (D)(@") = (v7)]-

Further, the waveguide currents and voltages are related
through the waveguide modal admittances as

(19)

-t

by = iy, i, = Yo, [Uh +un ] (20)

In (18)-(20), the total voltage (v) and current (7) in the
waveguides have been split into waves traveling toward ()
and away (—) from the cavity. Equations (18)—(20) are solved
simultaneously for the cavity field amplitude coefficients. This
completes the formulation of the waveguide-cavity coupling
problem.

III. NUMERICAL RESULTS

The method described in Section II has been computer
coded to compute the admittance matrix coefficients, voltages
in the waveguide-cavity aperture, amplitudes of individual
cavity modes, cavity fields as a function of incident wave
frequency and position in the cavity, and the stored energy
in the cavity. The codes were written in a very general way so
that they can handle both rectangular and circular geometries.

The code was first benchmarked against known results for
shorted rectangular and circular waveguides. Fig. 2 shows
the stored energy (obtained as 3" |f.|?) in a circular cavity

of perfectly conducting walls as a function of frequency of
the incident TEy; wave (when the cavity and the feeding
waveguide have equal transverse dimensions) compared to
the analytical result of a shorted waveguide. (The case of
cavity with perfectly conducting walls is solved by using a
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Fig. 2. Energy spectrum for the configuration in Fig. 1 (when waveguide
radius equals cavity radius) compared to that of a shorted waveguide. Incident
waveguide mode is TE01

value of infinity for the ohmic @ factors and n{w) = 0.) The
waveguide dimensions are chosen to be r; = ro = 0.22 cm,
and d = 3.5 cm; 290 TEgy, cavity modes are used. It is to
be noted that this many modes are required only to accurately
represent an electric field with an antinode at the aperture.
In the frequency range shown in Fig. 2, the energy obtained
from the cavity field expansion theory converges to within
2% of the waveguide analytical result. The disagreement
between the results increases with frequency. This is because
the admittance function expansion at the cavity-waveguide
junction has a slower rate of convergence with increasing
frequency, when the number of modes is fixed. As can be
expected, the convergence improves with an increase in the
number of axial modes used. The (). are measured from Fig. 2
by measuring the full width at half maximum (FWHM), and
are found to be in good agreement with (). obtained from
the waveguide analytical formula (Q, = “sZ where F is the
energy stored in the cavity and F; is the radiation power loss).
This benchmark provides a test of the coupling between the
cavity and the waveguide.

Another benchmark tests the code for the inclusion of the
ohmic effects. Here Q. is made to be of the same order of
magnitude as the ohmic quality factor Q,,(Qo, = Q%%); by
minimizing the external losses, the effect of ohmic losses can
be seen more clearly. The rectangular geometry provides a
convenient means of increasing the (). since the waveguide
height can be decreased to reduce the external losses, without
a corresponding increase in the waveguide cut-off frequency.
Fig. 3 shows the geometry of a rectangular cavity coupled to
a rectangular waveguide. The benchmark is run using cavity
and waveguide dimensions of ¢ = 1.783 cm, b = 0.993 cm,
¢ = b/100, and d = 4.0 cm. The conductivity of the
cavity walls is 1.0 x 10% S/m (close to stainless steel). Fig. 4
compares the results for cavities with walls of finite and infinite
conductivity. Q). is measured to be 920 from Fig. 4 from the
FWHM of the solid curve. The total quality factor (Q:) is
measured from the FWHM of the dashed curve to be 476.

1 1

@, is computed as (Q— =, ~ o) and is measured to be

989. This value for (), agrees very well with the result for the
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Fig. 3. Cross section of a rectangular waveguide feeding a rectangular
cavity. :
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Fig. 4. Comparison of energy spectra for the cavity in Fig. 3 for cases of
perfectly and imperfectly conducting walls.

known analytical result for @),,, computed to be 980 [8]. From
Fig. 4, the shift in the resonant frequency between the two
energy profiles is measured to be 4.65 MHz, which agrees well
with the known analytical shift (Aw = “5’ = 4.69 MHz) [2].

To demonstrate mode coupling through external and ohmic
effects in a gyrotron cavity, the configuration in Fig. 1 is used
to excite fields in a cavity of circular cross section. The cavity
and waveguide dimensions are ry = 0.22 cm, r; = 0.25

~cm, and d = 3.5 cm. The conductivity of the cavity walls

is 1.0 x 10 S/m. These dimensions result in a set of closely
spaced TEq;, modes. The incident waveguide mode is TEq;.
Fig. 5 shows the stored energy in cavities of finite and infinite
conductivity and the amplitudes of the first four axial modes
as a function of frequency in a cavity of finite conductivity.
Coupling exists between adjacent modes through both external
and ohmic effects. That there is mode coupling can be seen by
the stored energy in the cavity (Fig. 5(a)) which does not drop
to zero at any frequency, and also from the finite width of the
resonances. The lowest order modes have the highest external
(Q-factors because their resonant frequencies are closest to
the cut-off frequency (83.1 GHz), hence resuliing in a larger
impedance mismatch at the aperture. The ohmic effects are
more pronounced for the TEy;; mode compared to. the other
cavity modes because there is a larger amount of dissipation
in the cavity walls in TEg;; mode due to its lower group
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Fig. 5. (a) Top, energy spectra for the cavity in Fig. 1 for cases of finite

and perfectly conducting walls, and (b) bottom, profile of the first four modal
amplitudes.

velocity [13]. The maxima of individual modal amplitudes
(Fig. 5(b)) occur at appreximately the same frequencies as the
maxima of the energy profiles, indicating dominance of the
corresponding mode at its resonant frequency. Between any
two resonant frequencies; however, the corresponding adjacent
modes are of the same order of magnitude, indicating strong
mode coupling through external losses. The measured external
@ factors decrease approximately as % where p is mode axial
number. This is in agreement with known analytical formula
[12]. ‘
Significant cross-coupling from the «'th cavity mode to the
B'th cavity mode occurs through the ohmic losses only if:
1y Qf 2> and écga are of the same order of magnitude and 2)
We and wg areh}ﬁearly equal. From the expressions for ohmic
Q-factors for the cavity in Fig. 1 (see Appendix), it can be
seen that in an azimuthally symmetric cavity, cross-coupling
can occur only if the azimuthal indices m and m' are the
same. Between two TE modes with different radial indices in
a long cavity (d > a), there is little coupling because they are
widely separated in frequency (criterion 2)). If the modes have
the same radial indices but different axial indices, k1 > k.
yielding Qifj > Q%5 and there is very little cross-coupling by
criterion 1). This is true for lower order axial modes that are of
interest in gyrotron cavities. In a cavity where d = a both the
radial and axial indices of the two modes have to be different
to meet criterion 2) but such a choice of indices makes the

Q
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Fig. 6. Comparison of energy in the TE 11 mode for the cavity in Fig. 3 for
cases of no coupling between modes and with and without cross-coupling.

crossc-coupling Q‘Z,’(j = oo (in a completely enclosed cavity).
Finally, there are no TE,,,, — TM,,,,» mode paits which
satisfy both criteria for coupling.

Disruption of symmetry in the azimuthal, radial, or axial di-
rections removes the effective d,m/, Onn, and oy, terms in the
()-factor expressions, but the Q‘,’L‘g are generally substantially
larger than the Q%7 .

To demonstrate mode cross-coupling through ohmic effects
more clearly, the rectangular cavity shown in Fig. 3 is used
with dimensions of ¢ = 0.01783 m, b = 0.008 m, ¢ = /100,

“and d = 0.04 m. The height of the waveguide is much smaller

than that of the cavity to suppress the external coupling. The
dominant mode in the waveguide is TE;y which primarily
excites the TM1;1 cavity mode near 20.86 GHz. Fig. 6 shows
the effects of ohmic cross coupling from the TM;;; mode
into the TEy;; mode. The energy in the TE;;; mode is
compared for cases with and without the cross-coupling Q-
factors (Q%7). The choice of cavity dimensions results in
degenerate frequencies for the TM;1; and TE;;; modes, and

I TE1yy ~ FTM : i
TEIotETT N TE iy Lhe cross-coupling ohmic

Q}-Lfactors clearly cause a shift in the frequency where the
energy in the TE;1; mode is at its peak.

Fig. 7 shows a coupled (complex) cavity gyrotron [9]. The
gyrotron cavity consists of the main cavity strongly coupled to
a filtering cavity. The waveguide is used to couple power out of
the main cavity. The main cavity has a dense modal spectrum
while the filtering cavity has a rarefied modal spectrum. The
filtering cavity is used to enhance selected resonances. The
gyrotron electron beam excites fields in both the main and
filtering cavities. For optimal gyrotron oscillation, the electron
beam requires fields of similar spatial structure in the two cavi-
ties. Because the two cavities have different radial dimensions,
to match the fields at the junction they are operated with the
same azimuthal modal index but different radial indices. This
is achieved by designing the cavity dimensions such that the
TE,. and TE,,, resonant mode frequencies in the cavities -are
approximately the same by using the relation
T ZTmpn

() Tm,q
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Fig. 7. Cross section of a coupled (complex) gyrotron cavity.

where %, , and %, , are the n’th and ¢’th roots of the
equation (J) (z) = 0). An 85 GHz oscillator is designed
with the dimensions r; = 0.5288 cm, 7o = 0.3192 cm,
rq = 0.5488 c¢cm, d; = 1.1996 cm, and dy = 0.4253 cm.
The cavity dimensions are chosen such that the TE42; mode
in the main cavity and the TE4;1; mode in the filtering cavity
have resonances near 84.8 GHz.

The power in the incident waves (all propagating waveguide
modes) through the waveguide was held constant, normalized
to one watt at all frequencies in all the modes. Twenty-one
transverse TE,,,, modes were used in the waveguide and 800
TE,,np modes were used in the cavity. Fig. 8 shows the energy
stored in the main cavity, energy stored in the filtering cavity,
and their sum as a function of frequency. The main cavity has
many resonances in the frequency window shown here, but
the filtering cavity has just two resonances, and the resonant
frequencies of the main and filtering cavities coincided at
84.8 GHz to produce a significant overall resonance in the
cavity structure. Fig. 9 shows the modal amplitudes of each
of the modes in the main cavity at 84.8 GHz (the frequency of
strongest resonance in the overall structure). The TE42; mode
has the largest amplitude but many other modes are present,
indicating significant mode coupling. Aside from the TE42;
mode, all the cavity modes which have resonant frequencies
near 84.8 GHz are strongly excited.

IV. CONCLUSION

A mode-matching method used to compute the fields, modal
amplitudes, and admittances of a gyrotron cavity is presented.
The method has the advantage that it can compute the ampli-
tudes of individual modes in the cavity as well as the total
fields. Because of this feature, this method is particularly well
suited to the study of gyrotron operation. The formulation is
computer coded, and results from benchmark cases indicate
the correctness of the results. The results for the case of the
single circular cavity coupled out by a circular waveguide
indicate the degree of mode coupling through external radi-
ation losses and ohmic wall losses. The rectangular cavity
example demonstrates the ohmic cross-coupling between two
cavity modes. Results from the coupled (complex) cavity case
demonstrate that the two-cavity design selectively enhances

0.04 T :
------- Side Cavity

=+ Main Cavity
Total Cavity Energy

60 ) 70 80 90
Frequency (GHZ)

Fig. 8. Energy spectrum for the coupled (complex) cavity.
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Fig. 9. Modal content of the 84.8 GHz resonance in Fig. 7.

a particular mode. The analytical formulation presented here
can be modified to include more complicated structures such
as tapered wall cavities, waveguides and co-axial cavities. The
formulation is also suitable for inclusion of a gyrotron electron
beam, which is the subject of ongoing work.

APPENDIX

For the TE,,,;, modes in a cylindrical cavity, the eigenvec-
tors are given as

= 1 N ;P sinmeg .
Ea_Ca{ pmkaJm(xmna) P sin =

prz

!
— dkq x’;m J (x'mn g) cos m¢sin % }

In the waveguide, the electric field eigenvectors for the TE
modes are given as

B = g o (st ) T

+¢A>x;g" JI (xlmn %) cos mqb}.
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Here C,, and C,, are normalization constants, z7,,,, is the n’th
zero of J), and Z,, is the n'th zero of J,,, a and b are the
radii of the cavity and waveguide, respectively. The coupling
coefficients are given as

Yas = —

276t pT [ X 1
g mnLmin’ A
EmCan d { a/b m,m’ n,n’ (/))

+ mml(]. - 6m0)A$n,m’,n,‘n'(p)}

where the unprimed indices are for cavity modes and primed
indices are for waveguide modes. Similarly

271'6 ’ ;1;/ T ,
_ mm mnTmin Al
CrCykrem { ab m,m/,n,n’ (p)

+ mml(l - 6m0)A?n,m’,n,n’(p)}'

/8/\3 =

The @ factors are computed from (14). The integrals in (14)
are as follows

/ He - Hods
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(e () (-
Here ¢, and ¢, are the Neumann factors (¢, = 1 for p = 0,
and ¢, = 1 for p # 0); the unprimed indices correspond to the
H,, and the primed indices correspond to Hg. Similarly

‘51017’ Im (

/
" {%;—b’"'"‘Bm it () 070 (1 = 61mo)

X By ot (p)}
51)1) -
C C)\Gm ]\,)\
2,2
« mm@_am ki_pﬂ

a d d d?
where the unprimed indices correspond to H, and primed
indices correspond to G

47T(Smm/

X =
Gds = e
/SGA OAds = & T wem

/ /

X T 1.0

mnm'n 1
><{7Bm

ab ,m’,n,n’(p) + mm/(l - 6m0)

X By it (p)}

d Tt T )T r)
2 6 mm mm
o CACE kR e k
mm’ prp'm
x{ a +a— 7 4 }

where the unprimed indices correspond to G » and primed
indices correspond to G’ Here
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m,m .n,n (p) m <xmn a> m (xm T b>7
p p
En,m’,n,n’(p) = Jm ("Blmn E) T (w,m’n’ E)
and
3 / r P\ / P
i 1 = J - ' I K
m,m’ . n.n (p) m(xm'na) m (mm n G,)
p P

4 !
’ ’ = Jm < mn
Sonm m i (P) (JE .
In (18) and (19), the coefficient matrix elements are given as

—kan(w) Jwe
Aa = ] )
i kgé _ _95_22 k Q};Pé‘ f"p
a, ¢ =1, total number of caVity modes used

__ ka Bes | .
Ba,s - ]{I?X w ( Z Q 6qu>

a, =1, total number of cavity modes used

s = 1, total number of waveguide modes used

n(w) 1
k rYar’i‘JZﬁArQ)ﬂ Qh }

r = 1, total number of waveguide modes used

C’f [e4

o, A = 1, total number of cavity modes used

w 1
D,. = [{Zzﬂmms”( )Qw}

. ﬂa,rﬁa,s
e

7,8 = 1, total number of waveguide modes used

a, A = 1, total number of cavity modes used.

Equations (17)~(19) are solved as

(v7) = ((D) + (Yu)) H(C)(f) + (D) = (Yu ) ()]
where
(N ={I) = (4 + (B)(D) + (Yu) HC)}H(B)
X {(I) = (D) + (Yu))"H(D) = (Yu)) }(v).
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Here (Y,,) is a diagonal matrix with waveguide modal admit-
tances as its elements, and (/) is the identity matrix.
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