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A Mode-Matching Technique

for Mode Coupling in a Gyrotron Cavity
Vasu Kasibhotla, Student Member, IEEE, and Alan H. McCurdy, Member, IEEE

Abstract— The mode-matching technique (MMT) is used to
compute the electromagnetic fields, stored energy, and iuput ad-

mittances of a gyrotron cavity coupled to one or more waveguides.

The method is based on matching the cavity and waveguide

eigenmodes across the cavity apertures and accommodates cavity

walls of finite conductivity. The MMT is used in the gyrotron
problem because fields in and near the aperture must be com-

puted accurately, and because the eigenmode decomposition is
advantageous for inclusiou of an electron beam. Irrotational
modes are part of the complete set of orthogonal vectors required
to expand an H-field in an open cavity, but were excluded in
most gyrotron literature; here, this is corrected. The MMT is

numerically implemented for cavities of rectangular and circular

cross section. Coupling between different modes in a gyrotron
cavity through external and ohmic losses is demonstrated. A

coupled (complex) cavity gyrotron design is analyzed using MMT.

The energy and modal spectra of the cavity are computed,

demonstrating the mode selective properties of the design.

I. INTRODUCTION

I N A GYROTRON or other high power microwave oscil-

lator operating at high frequencies, it is not uncommon to

have two or more cavity electromagnetic modes in competi-

tion. It is important in such situations to be able to describe

the coupling between different modes accurately. In addition

to coupling through the electron beam, mode coupling can

occur through both external and ohmic losses in the cavity.

Typically, the gyrotron cavity is strongly coupled to the output

via an oversized waveguide, and this usually results in mode

coupling through external losses. In practice, the cavity wall

conductivity is usually high, but when modes are closely

spaced in frequency there. may be some coupling through

ohmic losses in the cavity surface. New equations and results

that include ohmic cross-coupling effects through the cavity

walls are presented. In addition, irrotational modes that must

be included to get the correct expansion for the ~-field in a

cavity with apertures in the cavity walls were not inluded in

much of the gyrotron literature. In this work, these irrotational

modes are included.

A number of techniques are available to describe the cavity

field excitation via the waveguide. They include the variational

method [1], the mode-matching technique (MMT) [2]–[4], the

method of moments (MOM) [5]–[7], and the scattering matrix
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method [10], [11 ]. The variational methods yield accurate re-

sults for single mode propagation but ignore higher order mode

interactions. The MMT is based on matching the waveguide

and cavity modes at the junction. The MOM analysis provides

accurate results for waveguide discontinuities, and has proven

to be more computationally efficient than MMT in some cases,

The scattering matrix method [11 ] has proven to be useful in

determining the quality factors and resonant frequencies of a

complex cavity,

The size of the scattering matrix in MOM [5] is proportional

to the number of the interacting modes (propagating and

weakly evanescent); however, the number of modes required to

compute the field intensity in or near the plane of discontinuity

is on the same order as the mode-matching technique. To

describe the interaction of the gyrotron electron beam with the

cavity fields, it is required that fields in the cavity -waveguide

junction be computed accurately. Many evanescent modes are

present near the waveguide-cavity junction. It is important

to be able to accurately determine the amplitude of these

evanescent waveguide modes in the plane of discontinuity,

as the amplitudes of cavity eigenmodes are determined by

the tangential electric field in the cavity -waveguide junction.

Moreover, in gyrotron theory, it is convenient to be able

to predict the growth of individual cavity modes with the

beam present, and the usual techniques for computing gyrotron

performance are heavily dependent on modal decomposition.

For this reason, the MMT is used to describe mode conversion

in the gyrotron problem.

The scattering matrix method [10] has been used in the

formulation of a problem in which a series of waveguides

of different cross sections are connected with either open or

closed ends. As with the MOM and MMT methods, to obtain

an accurate field representation in the cavity, a large number

of waveguide modes are required. The MMT can conveniently

include the ohmic effects of cavity walls, beam current loading,

and side-wall cavity coupling through terms in the resulting

oscillator equations.

A number of early workers developed electromagnetic

modal expansions in a conducting cavity [2], [3]. Many of

these proved to be either incomplete or difficult to evaluate.

The complete sets of orthonormal modes given in [4] are more

suitable for a general expansion of electromagnetic fields in

a cavity, and are used here.

Here MMT is numerically applied to describe the excitation

of electromagnetic fields in a gyrotron cavity coupled to one or

more waveguides. Losses due to finite conductivity of the walls

are taken into account. The numerical results are benchmarked
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against the known analytical solutions for fields in a shorted

waveguide and the known ohmic Q and frequency shift of a

weakly coupled cavity resonance [2], [8]. Coupling between

modes through radiation loss and dissipation in the cavity walls

is demonstrated and quantified. The equations developed here

can be readily modified to include an electron beam in the

gyrotron cavity.

Section II presents a formulation of the MMT as applied

to the cavity/waveguide problem including an electron beam.

The oscillator equations governing the growth of electromag-

netic modes in the gyrotron cavity are derived. A method

is described to solve the oscillator equations. Section III

gives benchmarks for the numerical results, and discusses

application of the theory to both a gyrotron cavity with lossy

walls and a coupled (complex) cavity gyrotron. Section IV

outlines the conclusions.

II. ANALYTICAL FORMLTLATION

Fig. 1 shows a circular waveguide exciting a cavity of

circular cross section. The electric and magnetic fields in the

cavity are expressed as sums of short circuit eigenmodes as

and

Here the L?. and 80 are the solenoidal modes and ~~ are

the irrotational modes. It is to be noted that the irrotational

modes ~~ are part of the complete set of eigenvectors required

in the magnetic field expansion in a cavity which is not

completely enclosed by a perfect conductor [4]. Irrotational

modes are not required to expand the electric field because

all irrotational modes are orthogonal to the real electric field

in the absence of an electron beam. (In the presence of an

electron beam, irrotational modes can be ignored in the electric

field expansion if the space charge effects are neglected.) The

eigenmodes satisfy the orthonormality relations given by

where 6 is the Kronecker delta function.

Expanding the curl of the electric and magnetic fields in

terms of the appropriate eigenmodes and substituting into

Maxwell’s equations [2], the oscillator equations describing

the time evolution of electromagnetic fields in the cavity are

obtained as follows

1r2— . — — — — — — — — — —

?

jj=o
Cawty

Fig. 1. Cross section of a circular wavegulde coupled to a cmcular cflvlty,

and

where S is the conducting portion of the cavity surface, S’ is

the open portion of the cavity surface, l’ is the cavity volume,

ka is the resonant wavenumber, ii is the outwardly directed

unit normal vector at the cavity surface, and J-is the electron

beam current density.

Here the problem is solved in the steady state. The wave-

guide fields are expressed as sums over the corresponding

waveguide eigenmodes as

(6)

and

(7)

where @t,, and @.,, are the transverse and longitudinal parts of

the s‘ th electric field eigenmode, ~t ,,, and ~,,, are the trans-

verse and longitudinal parts of the s‘ th magnetic field eigen-

mode, z1,, is, and Z, are the voltage, current, and impedance

associated with mode s, respectively. The waveguide eigen-

modes are orthonormalized as

Equations (6) and (7) are applicable to waves propagating in

the +: and – 2 directions in the waveguide. If botb forward

and backward waves are present, then the voltages and currents

are related as

It is assumed that there is no beam present in the gyrotron

cavity. It is also assumed that the waveguide is excited by a

source of unit amplitude propagating in the dominant mode
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+ = O otherwise). Equation (4) is Fourier(v~=lfors=l, v,

transformed to obtain

/

++ +

‘“(w)=(k%-:$)S+s{tix“(’’w)}“‘“(m‘s
where

fcy=~ticiadv. (10)
v

From Maxwell’s equations, the amplitude coefficients of the

magnetic field are obtained as

ha(w) = ~:fa(w)
a

where

h. =
/

I?c & dv (11)
v

and

where

(12)

The electric and magnetic fields in the cavity are coupled

through tlhe cavity surface impedance q(w) as

ii x E.(k))= 7/(w) 17c(w) (13)

on the conducting portion of the cavity surface. By defining

cavity ohmic quality factors as

where 6 IN the skin depth (evaluated at Wu; Wa = ka c), and

using (6), (10), and (13), the continuity of electric field across

the cavity-waveguide aperture gives

(15)

Here

Similarly, the continuity of the magnetic field across the

cavity -waveguide aperture, along with (2), (7), ( 10), ( 11), and

(13) gives

-’{?pa’r$s”}lvsn ’17)
Equations (15), (16), and (17) are written in a generalized

way so as to include a case where the cavity is fed by more

than one waveguide. The ind:x “n” is over all the waveguides

coupled to the cavity, and Gt,sm is the transverse part of the

s’th magnetic field eigenmode in the n’th waveguide coupled

to the cavity. The coefficients ~~,,. and /3A),n give a measure

of the coupling between the a’th cavity mode and the s’th

mode in the n’th waveguide. v and ~ are inversely proportional

to the external quality factors Q.. The ohmic Q factors include

both self- and cross-coupling terms. It is to be noted that (15)

and (17) are” actually power-series expansions in the small

‘(”) where q. = W. For the case of a single cavityquantity —

mode, ( 15Y reduces to

where the typical ~ ohmic dependence in the denominator

is observed. In addition, note the ohmic modification in

waveguide-cavity coupling through the & term. Equations

(15) and (17) can be written in matrix form as

(f) = (A)(f)+ (@[(v+)- (V-)] (18)

and

(~)= (C)(f’)+ (D)[(w+)- (lJ-)]. (19)

Further, the waveguide currents and voltages are related

through the waveguide modal admittances as

In (18)–(20), the total voltage (v) and current (z) in the

waveguides have been split into waves traveling toward (+)

and away (–) from the cavity. Equations ( 18)–(20) are solved

simultaneously for the cavity field amplitude coefficients. This

completes the formulation of the waveguide-cavity coupling

problem.

III. NUMERICAL RESULTS

The method described in Section II has been computer

coded to compute the admittance matrix coefficients, voltages

in the waveguide-cavity aperture, amplitudes of individual

cavity modes, cavity fields as a function of incident wave

frequency and position in the cavity, and the stored energy

in the cavity. The codes were written in a very general way so

that they can handle both rectangular and circular geometries.

The code was first benchmarked against known results for

shorted rectangular and circular waveguides. Fig. 2 shows

the stored energy (obtained as ~ 1.f~/2, in a circular cavity

of perfectly conducting walls asaa function of frequency of

the incident TEO1 wave (when the cavity and the feeding

waveguide have equal transverse dimensions) compared to

the analytical result of a shorted waveguide. (The case of

cavity with perfectly conducting walls is solved by using a
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Fig.2. Energy spectrum for the configuration in Fig. 1 (when waveguide

radiose qualscavityr adius)c omparedtot hatof a shorted waveguide. Incident
waveguide mode is TEO1.

value of infinity for the ohmic Q factors and q(u) = O.) The

waveguide dimensions are chosen to be rl = r2 = 0.22 cm,

and d = 3.5 cm; 290 TEoIP cavity modes are used. It is to

be noted that this many modes are required only to accurately

represent an electric field with an antinode at the aperture.

In the frequency range shown in Fig. 2, the energy obtained

from the cavity field expansion theory converges to within

2% of the waveguide analytical result. The disagreement

between the results increases with frequency. This is because

the admittance function expansion at the cavity -waveguide

junction has a slower rate of convergence with increasing

frequency, when the number of modes is fixed. As can be

expected, the convergence improves with an increase in the

number of axial modes used. The Q. are measured from Fig. 2

by measuring the full width at half maximum (FWHM), and

are found to be in good agreement with Q. obtained from

the waveguide analytical formula (Q, = & where E is the

energy stored in the cavity and Pt is the radiation power loss).

This benchmark provides a test of the coupling between the

cavity and the waveguide.

Another benchmark tests the code for the inclusion of the

ohmic effects. Here Q. is made to be of the same order of
magnitude as the ohmic quality factor Q., (Q. = Qi~ ); by

minimizing the. external losses, the effect of ohmic losses can

be seen more clearly. The rectangular geometry provides a

convenient means of increasing the Q. since the waveguide

height can be decreased to reduce the external losses, without

a corresponding increase in the waveguide cut-off frequency.

Fig. 3 shows the geometry of a rectangular cavity coupled to

a rectangular waveguide. The benchmark is run using cavity

and waveguide dimensions of a = 1.783 cm, b = 0.993 cm,

c = b/100, and d = 4.0 cm. The conductivity of the

cavity walls is 1.0 x 106 S/m (close to stainless steel). Fig. 4

compares the results for cavities with walls of finite and infinite
conductivity. Q. is measured to be 920 from Fig. 4 from the

FWHM of the solid curve. The total quality factor (Q~) is

measured from the FWHM of the dashed curve to be 476.

Q. is computed as (& = & – &) and is measured to be

989. This value for Qo agrees very well with the result for the

depth = a

4

d
4 -

7Cavity

A

b

Waveguide
I

c ---- ——— —— +Z
I

Z=o 1

Fig. 3. Cross section of a rectangular waveguide feeding a rectangular
cavity.
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Fig. 4. Comparison of energy spectra for the cavity in Fig. 3 for cases of
perfectly and imperfectly conducting walls.

known analytical result for Qo, computed to be 980 [8]. From

Fig. 4, the shift in the resonant frequency between the two

energy profiles is measured to be 4.65 MHz, which agrees well

with the known analytical shift (Aw = ~ = 4.69 MHz) [2].

To demonstrate mode coupling through external and ohmic

effects in a gyrotron cavity, the configuration in Fig. 1 is used

to excite fields in a cavity of circular cross section. The cavity

and waveguide dimensions are rl = 0.22 cm, r2 = 0.25

cm, and d = 3.5 cm. The conductivity of the cavity walls

is 1.0 x 106 S/m. These dimensions result in a set of closely

spaced TEOIP modes. The incident waveguide mode is TEO1.

Fig. 5 shows the stored energy in cavities of finite and infinite

conductivity and the amplitudes of the first four axial modes

as a function of frequency in a cavity of finite conductivity.

Coupling exists between adjacent modes through both external

and ohmic effects. That there is mode coupling can be seen by

the stored energy in the cavity (Fig. 5(a)) which does not drop

to zero at any frequency, and also from the finite width of the

resonances. The lowest order modes have the highest external

Q-factors because their resonant frequencies are closest to

the cut-off frequency (83. 1 GHz), hence resulting in a larger

impedance mismatch at the aperture. The ohmic effects are

more pronounced for the TEO1l mode compared to. the other

cavity modes because there is a larger amount of dissipation

in the cavity walls in TEo1l mode due to its lower group
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Fig. 5. (a) Top, energy spectra for the cavity in Fig, 1 for cases of finite

and perfectly conducting walls, arrd (b) bottom, profile of the first four modal

amplitudes.

velocity [13]. The maxima of individual modal amplitudes

(Fig. 5(b)) occur at approximately the same frequencies as the

maxima of the energy profiles, indicating dominance of the

corresponding mode at its resonant frequency. Between any

two resonant frequencies; however, the corresponding adjacent

modes are of the same order of magnitude, indicating strong

mode coupling through external losses. The measured external

Q factors decrease approximately as ~ where p is mode axial

number. This is in agreement with known analytical formula

[12].

Significant cross-coupling from the dth cavity mode to the

,B’th cavity mode occurs through the ohmic losses only if

1) # and ~ are of the same order of magnitude and 2)
Q:k

Wa a~d we are nearly equal. From the expressions for ohmic

Q-factors for the cavity in Fig. 1 (see Appendix), it can be

seen that in an azimuthally symmetric cavity, cross-coupling

can occur only if the azimuthal indices m and m’ are the

same. Between two TE modes with different radial indices in
a long cavity (d >> a), there is little coupling because they are

widely separated in frequency (criterion 2)). If the modes have

the same radial indices but different axial indices, kl >> k.

yielding Q~~ >> Q:: and there is very little cross-coupling by
criterion 1). This is true for lower order axial modes that are of

interest in gyrotron cavities. In a cavity where d N a both the

radial and axial indices of the two modes have to be different

to meet criterion 2) but such a choice of indices makes the

20.6 20.8 21

Frequency (GHz)

Fig. 6. Comparison of energy in the TE1 I I mode for the cavity in Fig. 3 foK

cases of no coupling between modes and with and without cross-coupling.

crossc-coupling Q~~ = cc (in a completely enclosed cavity).

Finally, there are no TEmnP – TMmm,P, mode pairs which

satisfy both criteria for coupling.

Disruption of symmetry in the azimuthal, radial, or axial di-

rections removes the effective 6~~, tinn, and 6PPJterms in the

Q-factor expressions, but the Q~~ are generally substantially

larger than the Q~~.

To demonstrate mode cross-coupling through ohmic effects

more clearly, the rectangular cavity shown in Fig. 3 is used

with dimensions of a = 0.01783 m, b = 0.008 m, c = b/100,

and d = 0.04 m. The height of the waveguide is much smaller

than that of the cavity to suppress the external coupling. The

dominant mode in the waveguide is TEIO which primarily

excites the TM111 cavity mode near 20.86 GHz. Fig. 6 shows

the effects of ohmic cross coupling from the TM111 mode

into the TE111 mode. The energy in the TE111 mode is

compared for cases with and without the cross-coupling Q-

factors (Q~f). The choice of cavity dimensions results in

deg~:~~: frequencies for the TMlll and TE1ll modes, and
1

TE1ll–TE1ll % T~l~~_+L,ll . The cross-coupling ohmic

~:~actors clearly $~se a shift in the frequency where the

energy in the TEM 1 mode is at its peak.

Fig. 7 shows a coupled (complex) cavity gyrotron [9]. The

gyrotron cavity consists of the main cavity strongly coupled to

a filtering cavity. The waveguide is used to couple power out of

the main cavity. The main cavity has a dense modal spectrtum

while the filtering cavity has a rarefied modal spectntm. The

filtering cavity is used to enhance selected resonances. The

gyrotron electron beam excites fields in both the main and

filtering cavities, For optimal gyrotron oscillation, the electron

beam requires fields of similar spatial structure in the two cavi-

ties. Because the two cavities have different radial dimensions,

to match the fields at the junction they are operated with the

same azimuthal modal index but different radial indices. This
is achieved by designing the cavity dimensions such that the

TE ~m and TEmg resonant mode frequencies in the cavities are

approximately the same by using the relation

‘rl Xm ~—_-

?-2 Xm,q
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Fig.7. Cross section ofacoupled (complex) gyrotron cavity.

where Xm,. and xm,~ are the n’th and q’th roots of the

equation ( .J~ (z) = O). An 85 GHz oscillator is designed
with the dimensions rl = 0.5288 cm, r2 = 0.3192 cm,

T3 = 0.5488 cm, dl = 1.1996 cm, and dz = 0.4253 cm,

The cavity dimensions are chosen such that the TE421 mode

in the main cavity and the TE411 mode in the filtering cavity

have resonances near 84.8 GHz.

The power in the incident waves (all propagating waveguide

modes) through the waveguide was held constant, normalized

to one watt at all frequencies in all the modes. Twenty-one

transverse TEnn modes were used in the waveguide and 800

TE~~P modes were used in the cavity. Fig. 8 shows the energy
stored in the main cavity, energy stored in the filtering cavity,

and their sum as a function of frequency. The main cavity has

many resonances in the frequency window shown here, but

the filtering cavity has just two resonances, and the resonant

frequencies of the main and filtering cavities coincided at

84.8 GHz to produce a significant overall resonance in the

cavity structure. Fig. 9 shows the modal amplitudes of each

of the modes in the main cavity at 84.8 GHz (the frequency of

strongest resonance in the overall structure). The TE421 mode

has the largest amplitude but many other modes are present,

indicating significant mode coupling. Aside from the TE421

mode, all the cavity modes which have resonant frequencies

near 84.8 GHz are strongly excited.

IV. CONCLUSION

A mode-matching method used to compute the fields, modal

amplitudes, and admittances of a gyrotron cavity is presented.

The method has the advantage that it can compute the ampli-

tudes of individual modes in the cavity as well as the total

fields. Because of this feature, this method is particularly well

suited to the study of gyrotron operation. The formulation is

computer coded, and results from benchmark cases indicate

the correctness of the results. The results for the case of the
single circular cavity coupled out by a circular waveguide

indicate the degree of mode coupling through external radi-

‘ ation losses and ohmic wall losses. The rectangular cavity

example demonstrates the ohmic cross-coupling between two

cavity modes. Results from the coupled (complex) cavity case

demonstrate that the two-cavity design selectively enhances
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Fig. 8. Energy spectrum for the coupled (complex) cavity.
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Fig. 9. Modal content of the 84.8 GHz resonance in Fig. 7.

a particular mode. The analytical formulation presented here

can be modified to include more complicated structures such

as tapered wall cavities, waveguides and co-axial cavities. The

formulation is also suitable for inclusion of a gyrotron electron

beam, which is the subject of ongoing work.

APPENDIX

For the TE~nP modes in a cylindrical cavity, the eigenvec-
tors are given as

~.=k{-~m’ff’m(x~n:)ysin?

1
- C&a%J~ (x~n~) cos m$ sin’~ .

In the waveguide, the electric field eigenvectors for the TE

modes are given as
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Here Ca and CW are normalization constants, z~n is the n’th

zero of J~ and Xrnn is the n’th zero of Jm, a and b are the
radii of the cavity and waveguide, respectively. The coupling

coefficients are given as

( )}+mni(l – 6~o)A:,~,,n,m, p

where the unprimed indices are for cavity modes and primed

indices are for waveguide modes. Similarly

{

~A~ = _ 2T6mm’‘An:;m’n’A;,mI,n,nI (P)
c~cwk~em

( )}.+‘mm’(l – 6~o)A:,rn,,~,n, p

The Q factors are computed from (14), The integrals in (14)

are as follows
.-

——

x

+

x

p7r p’f’r 7r&_l
4————

d d CaCfl~~

{

x~n ‘
—T-B&,m,,n,n, (p) + rnrn’(1 – 6mo)B2

ab ~,ml,nnl(P)}

27r6mnI d
—--4ppf Jm(~Lm)J.c(&n/ )Cacp-Epem

{m’<a+)+a(k’-%w-%al
Here CPand cm are the Neumann factors (CP = 1 for p = O,

and CP= 1 for p # O); the unprimed indices correspond to the

~a, and the primed indices correspond to fl~. Similarly

/
i?. . 6~ds

s

=, ~p7r 1 7r6mmt

d k~ CeC~e~

{

x~nx~,n,
x ~,m,n,n(P) + mm’(1 - Lo)B’

ab

~,m,n,n(P)}x B2

?rtimml Jrn(4dLn(’&/)
+ 2 L?ippl

~P cac~em k~

{ a d -a%’’-%]

mm’ pr
x ‘—

where the unprimed indices correspond

indices correspond to ~~

/
~~ . $’ds =

47r6mml

s cAc; kAk; Ern

to l?. and primed

{

X;nx’m,n,
x m,m >.>.’(P)+ ~~’(1 - &o)B1 ,

ab

~,m%nl(P)}x B2

+ 2$ippf
T6mmt Jm(&m)Jm(&ml)

c~c;k~k;em k~

{

mmt
x—

p7r p’7r

a ‘a27 }

where the unprimed indices correspond to (?A and primed

indices correspond to (?A. Here

m,m’,n,n(P) = /b fi,m,n,n(p)pdp,A1
o

rn)m,n,rJ(P)= lb%ml,n,n(d:A2

and

m,rn,n,n(P) = la .f&n,n,n4p)Pdp,B1

rn,rrz,n,n(P) = J“ &,mr,n,nJ( P):B2

and where

f?t,rm,n,nI(P) = Jm(x;n:)Jm@nw;)

and

( ‘a)‘((xin:)>~;,m)n,n(p) = J& x~ E J’

‘m’n’(p)=Jm(x~: )Jm’(x~:)
f’

In (18) and (19), the coefficient matrix elements are given as

a, p = 1, total number of cavity modes used

a, p = 1, total number of cavity modes used

s = 1, total number of waveguide modes used

r = 1, total number of waveguide modes used

a, A = 1, total number of cavity modes used

r,s = 1, total number of waveguide modes used

a, A = 1, total number of cavity modes used.

Equations (17)–(19) are solved as

(W-) = ((D)+ (YW))-l[(C)(f) + ((D) - (YW))(V+)]

where

(f) = {(J) - (A)+ (B)((~) + (%)) -l(C) }-l(B)

x {(1) – ((D) + (YW))-l((D) – (YW))}(V+).
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Here (YW) is a diagonal matrix with waveguide modal admit-

tances as its elements, and (1) is the identity matrix.
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